

Equivalent Circuit Programming for Power Flow Model Optimization in SUGAR

Marko Jereminov, PhD Senior Research Scientist

Need for a robust and efficient optimization toolbox

- Solving power flow optimizations is essential but challenging in general:
 - i. Highly nonlinear and **nonconvex problems**
 - ii. Fast and robust optimal solution required for large scale problems

FERC: today's "approximate-solution techniques may unnecessarily cost tens of billions of dollars per year" and "result in environmental harm from unnecessary emissions and wasted energy."^[1]

Generic algorithms and toolboxes independent of problem "physics"

Define a model and an objective

Optimal Solution?

Circuit simulation and SPICE

- Initially performed within an optimization framework, but from 1970s
 branched out in search for better efficiency
- Developed robust simulation techniques to reduce dependency between problem size and efficiency (billion+ nodes problems)

We know a great deal about the physics of the grid and how it "should" behave – can we exploit this for grid-focused, physics-based optimization?

Introducing SUGAR

Suite of Unified Grid Analyses with Renewables

- Reformulates power flow model in terms of currents, voltages and admittances
- Inspired by the technology that enables the design of billion-node computer chips
- Validated against standard commercial software with real CEII cases and compatible with industry-standard data formats
- Based on licensed technology from Carnegie Mellon University

Flexible interface for user-defined analyses

SUGAR models

- Equivalent circuit models representing a network of admittances and voltage sources exactly capture power system response at a steady-state
- Solving for the currents, voltages and admittance of an equivalent circuit corresponds to the traditionally formulated power flow solution

- Solve for the value of G that absorbs specified real power value
- Solve for the value of G that supplies optimal power to the system
- Solve for the value of B that maintains the bus voltage to a specified point

Equivalent Circuit Programming (ECP) within SUGAR

Advantages of circuit perspective on optimality conditions

- Developed set of powerful (ECP) methods and techniques to ensure numerical stability and robustness of SUGAR optimization capabilities
 - Fusing the best from optimization theory with decades of successful and advanced research in the field of circuit simulation
- Passivity of adjoint (dual) circuit ensures optimality
 - Ensuring passivity during the solution process ensures an optimality of the obtained solution
- SUGAR based optimization framework is presently used in industry for planning analyses of real power flow cases
 - Can robustly include steep discrete nonlinear models, etc.
 - Decreases engineering time from months to minutes

Implicit modeling of discrete behavior

- Design the adjoint circuit to achieve the desired properties of optimal solutions
 - Reverse-engineering it to mathematical objectives and constraints on power system response
- Implicitly include discrete behavior of power grid models within a single optimization solve
 - Automatic voltage control (AVR)
 - Realistic grid control modes
 - Generator switch
 - Branch switch, etc.

SUGAR in GO Competition 2

Trials 1 and 2:

- Addressing the main issues from GO1
 - o Developing circuit inspired cvx solver for accurate state initialization
 - o Extending the SUGAR-ECP framework to include AC-OPF for real-world cases
- Incorporating the basic AC-OPF models
- Cleaning/debugging the models through platform submissions

Trial 3:

Incorporating models for discrete device variables

Final Event:

- Included binary switching behavior of generators
- Extensive testing

PST results analysis and comparisons

- Same submission for all 4 divisions: SUGAR runs all cases within <5 min timeframe
- Results improve with cleaner models and more constraints incorporated
- Generator/branch switching included post T3 submission

Event	Ensembled	T2 MS gain	Post T2 MS gain	Post T3 MS gain
Trial 2	3,845,656,920 /3,934,049,14	1,392,109,398	3,166,817,581	3,600,066,871
Trial 3	210,524,387 /210,300,837	1	161,876,057	197,824,401

Awaiting Final Event gains: 186,451,062 (~195M without a contingency parsing bug)

The most expensive bug we will (hopefully ever) have at PST

- Parsing and applying a contingency of a particular configuration
- Parallel transformer and Tx line
- Not applying a single contingency correctly gets you a default score (zero gain)

What we learned so far, and possible improvements

- Spending more time cleaning the data developing models for submissions
- Network design matters
 - SUGAR discovered cases with better gains infeasible with switching
 - Cases where minimum load limits exceed branch ratings
 - Other non-physical synthetic model problems
- With demand response included more contingences are feasible
 - Most of the obtain network results were fully secured
 - We could still better consider the effect of infeasible corner cases

Conclusions

- SUGAR facilitates fusion of the best properties of circuit simulation and optimization algorithms
 - Increases the efficiency and improves the robustness
 - **Decreases** the dependency between the solution process and problem size
 - **Allows** for extremely large-scale optimization problems
 - Enables implicit incorporation of challenging discrete models within power flow optimization
- Significant improvements toward realistic power system simulation and optimization problems

TECHNOLOGIES

GO Competition Team Members

Marko Jereminov, Ph.D. (team lead)

Hui Zheng, Ph.D.

Athanasios Terzakis

David M. Bromberg, Ph.D.

Prof. Larry Pileggi

David Bromberg, Ph.D.
Co-founder and CEO

Prof. Larry Pileggi Co-founder and Chairman

Hui Zheng, Ph.D. Co-founder

Marko Jereminov, Ph.D. Senior Research Scientist

Athanasios Terzakis
Computational Software Engineer

Joseph Silvers, P.E. Lead Application Engineer

Alessandra Leuzzi-Botello Full Stack Software Architect

John Kieffer Computational Software Engineer

Mariella Arias Frontend Software Engineer